SIMPLE ML

Level switch

GENERAL CHARACTERISTICS

These level switches (**ML series**) constitute a simple, reliable and economic solution for the control of the level in all those applications where the space and simplicity of assembly are mandatory for the user.

- Small size.
- Economical and reliable.
- Executions in Polypropylene and PVDF
- Operating ambient temperature -30 / +55 °C 90% RH.
- Easy and quick installation.
- Degree of protection IP65.

TECHNICAL DATA

Туре	Material		Float S.G.	Pressure Bar	Temperature °C
PML	Polypropylene	Blue	0,6	3	90
FML	PVDF	Black	0,75	6	130

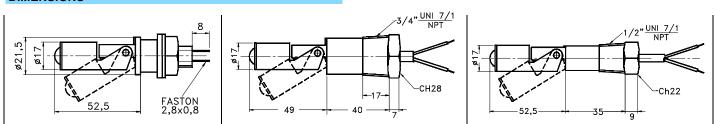
Œ

PROCESS CONNECTIONS

Tab.2

Tab.1

Assembly f	rom inside the tar	ık		Assembly fr	om outside t	he tank	and availab	le threa	ads	
	16K			GC-			15		20	
	ody thread M16 x 1,	5	Viton	standard compr		t.	1/2	"	3/4"	
Installa	ation see Tab.4			Installation see	e Tab.4		C –	N	C – N	l
Male thread		Available	materials			Gas	sket			
С	N	0	S	Р	F		Viton	Z	Silicon	W


С	N	0	S	Р	F	Viton	Z	Silicon	W
Conical UNI 7/1	Conical NPT	Brass	AISI-316	Polypropylene	PVDF	Standard		On request	
15 – 20)	15	- 20	16K				GC	

ELECTRICAL CONTACT Tab.3

TY	'PE	POW	/ER	VOLT	AGE	CURF	RENT
		VA	W	AC	DC	AC	DC
3D	SPST	70	50	300	350	0,5	0,7
7D	SPDT	20	20	150	150	0,5	0,5
Wiring							

C11,5m cableCCable length on requestC23m cableFSTMale faston 2 x 0,8

N.B. Faston wiring is available only on 16K – GC version.

We reserve the right to change the data without notice

SIMPLE ML

Level switch

OPERATION

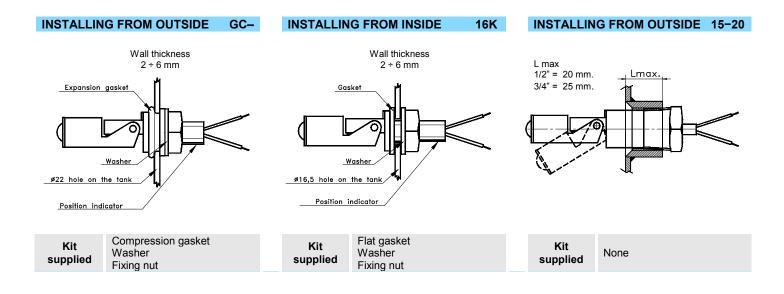
A normally open reed contact is sealed in the body of the instrument, in the float there is housed a permanent magnet. At the moment in which the thrust of the liquid, lifting up the float, approaches the magnet to the electrical contact occurs the closure of the contact itself.

Rotating the instrument through 180 degrees around its own axis, the float will be, in the absence of level, against the abutment point and the contact will be closed.

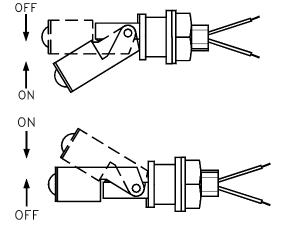
The thrust of the liquid, in this case, depart the float from the contact causing it to open.

ASSEMBLY AND INSTALLATION

Tab.4


Assembly from inside the tank 16K

- Drill a hole \oslash 16.5 mm in the tank.
- Unscrew the fixing nut and remove the washer and the expansion gasket.
- Insert the flat sealing gasket.
- Insert the level switch into the hole (∅ 16.5 mm) of the tank.
- Screw the fixing nut up to compress the flat gasket, inside the tank, taking the position indicator downward to have the contact N.O. or upward to have the contact N.C.


Assembly from outside the tank GC-

- Drill a hole \oslash 22 mm in the tank.
- Insert the level switch into the hole until the compression gasket stops.
- Screw the fixing nut so that the gasket begins to expand inside the tank.
- Place the position indicator downward to have the N.O. contact or upward to have the N.C. contact.
- Tighten the nut in order to complete the expansion of the gasket and thus obtain the tightness of the system.

Caution: Verify that the holes for housing the instrument, in the tank, are carefully deburred, in order to avoid damage to the seal and to obtain a perfect hydraulic seal.

NOMEN	NCLATUR	RE							
S1	FML	3D	20 C	S	C1	M			
•									N.1 electrical contac
	•						Tab.1		Туре
		•					Tab.3	3	B Electrical contact
			•				Tab.	2	2 Process connection
				•			Tab	.2	.2 Sealing gasket mate
					•		Tab	o.3	o.3 Wiring
						•	Tab.3	3	Cable length – only f

e reserve the right to change the data without notice

BE#092/5-01/2014

